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We establish explicit duality transformations for systems ofM q-state Potts models coupled through their
local energy density, generalizing known results forM51,2,3. TheM-dimensional space of coupling constants
contains a self-dual submanifold of dimensionDM5@M /2#. For the caseM54, the variation of the effective
central charge along the self-dual surface is investigated by numerical transfer matrix techniques. Evidence is
given for the existence of a family of critical points, corresponding to conformal field theories with an extended
SM symmetry algebra.
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For several decades, theq-state Potts model has been us
to model ferromagnetic materials@1#, and an impressive
number of results are known about it, especially in two
mensions@2–4#. More recently, its random-bond counterpa
has attracted considerable attention@5#, primarily because it
permits one to study how quenched randomness couplin
the local energy density can modify the nature of a ph
transition.

But despite the remarkable successes of conformal inv
ance applied to pure two-dimensional systems, the amou
analytical results on the random-bond Potts model is ra
scarce. Usually the disorder is dealt with by introducingM
replicas of the original model, with mutual energy-ener
interactions, and taking the limitM→0. The price to be paid
is, however, that the resulting system loses many of the p
erties~such as unitarity! that lie at the heart of conventiona
conformal field theory@6,7#.

Very recently, an alternative approach was suggested
Dotsenkoet al. @8#. These authors point out that the pertu
bative renormalization group@6# ~effectively an expansion
around the Ising model in the small parameter«5q22)
predicts the existence of a nontrivial infrared fixed point
interlayer couplingg* }2«/(M22)1O(«2), so that the re-
gionsM,2 andM.2 are somehow dual upon changing t
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sign of the coupling constant1 @9#. More interestingly, for
M53 they identify the exact lattice realization of a critic
theory with exponents consistent with those of the pertur
tive treatment, and they conjecture that this generalizes
any integerM>3. Their proposal is then to study this cla
of coupled models, which are now unitary by definition, a
only take the limitM→0 once the exact expressions for th
various critical exponents have been worked out. One co
hope to attack this task by means of extended conformal fi
theory, thus combining theZq symmetry of the spin variable
by a non-AbelianSM symmetry upon permuting the replica

Clearly, a first step in this direction is to identify the la
tice models corresponding to this series of critical theori
parametrized by the integerM>3. For M53 this was
achieved@8# by working out the duality relations forM
coupled Potts models on the square lattice, within
M-dimensional space of coupling constants giving rise toSM
symmetric interactions amongst the lattice energy opera

1The caseM52 is special: Forq52 ~the Ashkin-Teller model!
the coupling presents a marginal perturbation, giving rise to
halfline of critical points along which the critical exponents va
continuously@3#. On the other hand, forq.2 where the perturba-
tion is relevant, the model is still integrable, but now present
mass generation leading to noncritical behavior@9#.
R1 ©2000 The American Physical Society
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of the replicas. Studying numerically the variation of t
effective central charge@10# along the resulting self-dua
line, using a very powerful transfer matrix technique, t
critical point was unambiguously identified with one of th
endpoints of that line.

Unfortunately, it was hard to see how such duality re
tions could be extended to the case of generalM. The calcu-
lations in Ref.@8# relied on a particular version@11# of the
method of lattice Fourier transforms@12#, already employed
for M52 two decades ago@13#. Though perfectly adapted t
the case of linear combinations of cosinoidal interactio
within a single~vector! Potts model@12#, this approach led to
increasingly complicated algebra when several coupled m
els were considered. Moreover, it seemed impossible to
cast the end results in a reasonably simple form for largerM.

In the present Rapid Communication we wish to ass
whether such a scenario of a unique critical point with
extendedSM symmetry can indeed be expected to persis
the general case ofM>3 symmetrically coupled models. W
explicitly work out the duality transformations for anyM,
and show that they can be stated in a very simple form@Eq.
~9!# after redefining the coupling constants.

The lattice identification of theM53 critical point in Ref.
@8# crucially relied on the existence of aone-parameterself-
dual manifold, permitting only two possible directions of th
initial flow away from the decoupling fixed point. We find i
general a richer structure with an@M /2#-dimensional self-
dual manifold. Nonetheless, from a numerical study of
caseM54 we end up concluding that the uniqueness of
nontrivial fixed point can be expected to persist, since
decoupling fixed point acts as a saddle point of the effec
central charge.

Consider then a system ofM identical planar lattices
stacked on top of one another. On each lattice sitei, and for
each layerm51,2, . . . ,M , we define a Potts spins i

(m) that
can be in any ofq52,3, . . . distinct states. The layers inte
act by means of the reduced Hamiltonian

H5(̂
i j &

Hi j , ~1!

where^ i j & denotes the set of lattice edges, and anSM sym-
metric nearest-neighbor interaction is defined as

Hi j 52 (
m51

M

Km ( 8
m1Þm2Þ•••mm

)
l 51

m

d~s i
(m l ) ,s j

(m l )!. ~2!

By definition the primed summation runs over the (m
M) terms

for which the indices 1<m l<M with l 51,2, . . . ,m are all
different, andd(x,y)51 if x5y and zero otherwise.

For M51 the model thus defined reduces to the conv
tional Potts model, while forM52 it is identical to the
Ashkin-Teller-like model considered in Ref.@13#, where the
Potts models of either layer are coupled through their lo
energy density. ForM.2, additional multienergy interac
tions between several layers have been added, since
interactions are generated by the duality transformations
we shall soon see. However, from the point of view of co
formal field theory these supplementary interactions are
relevant in the continuum limit. The caseM53 was dis-
cussed in Ref.@8#.
-

s

d-
e-

s
n
n

e
e
e
e

-

l

ch
as
-
r-

By means of a generalized Kasteleyn-Fortuin transform
tion @14# the local Boltzmann weights can be recast as

exp~2Hi j !5 )
m51

M

) 8
m1Þm2Þ•••mm

3F11~eKm21!)
l 51

m

d~s i
(m l ) ,s j

(m l )!G . ~3!

In analogy with the case ofM51, the products can now
be expanded so as to transform the original Potts model
its associated random cluster model. To this end we note
Eq. ~3! can be rewritten in the form

exp~2Hi j !5b01 (
m51

M

bm ( 8
m1Þm2Þ•••mm

)
l 51

m

d~s i
(m l ) ,s j

(m l )!,

~4!

defining the coefficients$bm%m50
M . The latter can be related

to the physical coupling constants$Km%m51
M by evaluating

Eqs.~3! and~4! in the situation where preciselym out of the
M distinct Kroneckerd-functions are nonzero. Clearly, i
this case Eq.~3! is equal to eJm, where

Jm5 (
k51

m S m
k DKk ~5!

for m>1, and we setJ05K050. On the other hand, we find
from Eq. ~4! that this must be equated to(k50

m (k
m)bk . This

set ofM11 equations can be solved for thebk by recursion,
considering in turn the casesm50,1, . . . ,M . After some
algebra, the edge weightsbk ~for k>0) are then found as

bk5 (
m50

k

~21!m1kS k
mDeJm. ~6!

The partition function in the spin representation

Z5(
$s%

)̂
i j &

exp~2Hi j ! ~7!

can now be transformed into the random cluster represe
tion as follows. First, insert Eq.~4! on the right-hand side o
the above equation, and imagine expanding the product o
the lattice edgeŝi j &. To each term in the resulting sum w
associate an edge coloringG of theM-fold replicated lattice,
where an edge (i j ) in layer m is considered to be colore
~occupied! if the term contains the factord(s i

(m) ,s j
(m)), and

uncolored~empty! if it does not.~In this language, the cou
plings Jk correspond to the local energy density summ
over all possible permutations of preciselyk simultaneously
colored edges.!

The summation over the spin variables$s% is now trivi-
ally performed, yielding a factor ofq for each connected
component~cluster! in the coloring graph. Keeping track o
the prefactors multiplying thed-functions, using Eq.~4!, we
conclude that

Z5(G )
m51

M

qCmbm
Bm , ~8!
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whereCm is the number of clusters in themth layer, andBm
is the number of occurencies inG of a situation where pre
cisely m (0<m<M ) edges placed on top of one anoth
have been simultaneously colored.

It is worth noticing that the random cluster description
the model has the advantage thatq only enters as a param
eter. By analytic continuation one can thus give meaning
noninteger number of states. The price to be paid is that
Cm are,a priori, nonlocal quantities.

In terms of the edge variablesbm the duality transforma-
tion of the partition function is easily worked out. For sim
plicity we shall assume that the couplings constants$Km% are
identical between all nearest-neighbor pairs of spins, the g
eralization to an arbitrary inhomogeneous distribution
couplings being trivial. By analogy with the caseM51, a
given coloring configurationG is taken to be dual to a col
oring configurationG̃ of the dual lattice obtained by applyin
the following duality rule:Each colored edge intersects a
uncolored dual edge, and vice versa. In particular, the de
mand that the configurationGfull with all lattice edges colored
be dual to the configurationGempty with no colored~dual!
edge fixes the constant entering the duality transformat
Indeed, from Eq.~8!, we find thatGfull has weightqMbM

E ,
whereE is the total number of lattice edges, andGempty is
weighted byqMFb̃0

E , whereF is the number of faces, includ
ing the exterior one. We thus seek for a duality transform
tion of the formqMFb̃0

EZ($bm%)5qMbM
E Z̃($b̃m%), where for

any configurationG the edge weights must transform so as
keep the same relative weight betweenG andGfull as between
G̃ andGempty.

An arbitrary coloring configurationG entering Eq.~8! can
be generated by applying a finite number of changes toGfull ,
in which an edge of weightbM is changed into an edge o
weight bm for somem50,1, . . . ,M21. By such a change
in general, a numberk<M2m of pivotal bonds are remove
from the coloring graph, thus creatingk new clusters, and the
weight relative to that ofGfull will change byqkbm /bM . On
the other hand, in the dual configurationG̃ a numberM
2m2k of clusters will be lost, since each of thek new
clusters mentioned above will be accompanied by the for
tion of a loop in G̃. The weight change relative toGempty

therefore amounts tob̃M2m /(b̃0qM2m2k). Comparing these
two changes we see that the factors ofqk cancel nicely, and
after a change of variablesm→M2m the duality transfor-
mation takes the simple form

b̃m5
qmbM2m

bM
for m50,1, . . . ,M , ~9!

the relation withm50 being trivial.
Self-dual solutions can be found by imposingb̃m5bm .

However, this gives rise to only@(M11)/2# independent
equations

bM2m5qM /22mbm for m50,1, . . . ,FM21

2 G , ~10!

and the M-dimensional parameter space$bm%m51
M , or

$Km%m51
M , thus has a self-dual submanifold of dimensi
f

a
e

n-
f

n.

-

a-

DM5@M /2#. In particular, the ordinary Potts model (M
51) has a unique self-dual point, while forM52 @13# and
M53 @8# one has a line of self-dual solutions.

Our main result is constituted by Eqs.~5! and~6! relating
the physical coupling constants$Km% to the edge weights
$bm%, in conjunction with Eqs.~9! and ~10! giving the ex-
plicit ~self-!duality relations in terms of the latter.

Since the interaction energies entering Eq.~3! are invari-
ant under a simultaneous shift of all Potts spins, an alter
tive way of establishing the duality transformations proced
by Fourier transformation of the energy gaps@11#. This
method was used in Refs.@13# and@8# to work out the cases
M52 and M53, respectively. However, asM increases,
this procedure very quickly becomes quite involved. To b
ter appreciate the ease of the present approach, let us b
pause to see how the parametrizations of the self-dual l
for M52,3, expressed in terms of the couplings$Km%, can
be reproduced in a most expedient manner.

For M52, Eq.~10! givesb25q, where from Eqs.~5! and
~6! b25e2K11K222eK111. Thus,

eK25
2eK11~q21!

e2K1
, ~11!

in accordance with Ref.@13#. Similarly, for M53 one has
b15qb2 /b35b2 /Aq, with b15eK121, b2 as before, and
b35e3K113K21K323e2K11K213eK121. This immediately
leads to the result given in Ref.@8#,

eK25
~21Aq!eK12~11Aq!

e2K1
,

~12!

eK35
3~eK121!~11Aq!1q3/211

@~21Aq!eK12~11Aq!t#3
e3K1 .

Returning now to the general case, we notice that the s
dual manifold always contains two special points for whi
the behavior of theM coupled models can be related to th
of a single Potts model. At the first such point,

bm5qm/2 for m50,1, . . . ,FM

2 G , ~13!

one hasK15 log(11Aq) and Km50 for m52,3, . . . ,M ,
whence theM models simply decouple. The other point

bm5d~m,0! for m50,1, . . . ,FM

2 G ~14!

corresponds toKm50 for m51,2, . . . ,M21 and KM
5 log(11qM/2), when the resulting model is equivalent to
singleqM-state Potts model. Evidently, forM51 these two
special points coincide.

Specializing now to the case of a regular two-dimensio
lattice, it is well-known that at the two special points th
model undergoes a phase transition, which is continuou
the effective number of states (q or qM as the case may be!
is <4 @15#. In Ref. @8# the question was raised whether o
in general can identify further nontrivial critical theories o
the self-dual manifolds. In particular, it was argued that
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M53 there is indeed such a point, supposedly correspon
to a conformal field theory with an extendedS3 symmetry.

To get an indication whether such results can be expe
to generalize also to higher values ofM, we have numeri-
cally computed the effective central charge ofM54 coupled
models along the two-dimensional self-dual surface.
were able to diagonalize the transfer matrix for strips
width L54,6,8 lattice constants in the equivalent lo
model. Technical details of the simulations have been
ported in Ref.@8#. Relating the specific free energyf 0(L) to
the leading eigenvalue of the transfer matrix in the stand
way, two estimates of the effective central charge,c(4,6)
and c(6,8), were then obtained by fitting data for two co
secutive strip widths according to@16#

f 0~L !5 f 0~`!2
pc

6L2
1•••. ~15!

A contour plot ofc(6,8), based on a grid of 21321 param-
eter values for (b1 ,b2), is shown in Fig. 1. The data fo
c(4,6) look qualitatively similar, but are less accurate due
finite-size effects. We should stress that even though the
solute values ofc(6,8) are some 4% below what one wou
expect in theL→` limit, the variationsin c are supposed to

FIG. 1. Contour plot of the effective central chargec(6,8) along
the self-dual surface (b1 ,b2) for four coupled three-state Pott
models. The decoupled fixed point is shown as an asterisk,
renormalization group flow lines are sketched as a guide to the
cs
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be reproduced much more accurately@8#. On the figureq
53, but other values ofq in the range 2,q<4 lead to
similar results.

According to Zamolodchikov’sc-theorem@10#, a system
initially in the vicinity of the decoupled fixed poin
(b1 ,b2)5(Aq,q), shown as an asterisk on the figure, w
start flowing downhill in this central charge landscape. F
ure 1 very clearly indicates that the decoupled fixed po
acts as a saddle point, and there are thus only two poss
ties for the direction of the initial flow.

The first of these will take the system to the stable fix
point at the origin which trivially corresponds to one se
dualq4-state Potts model. Forq53 this leads to the genera
tion of a finite correlation length, consistent withceff50 in
the limit of an infinitely large system. As expected, the flo
starts out in theb2 direction, meaning that it is the energy
energy coupling between layers (K2) rather than the spin-
spin coupling within each layer (K1) that controls the initial
flow.

More interestingly, if the system is started out in theop-
positedirrection ~i.e., with K2 slightly positive! it will flow
towards a third nontrivial fixed point, for which the edg
weights tend to infinity in some definite ratios.~Exactly what
these ratios are is difficult to estimate, given that t
asymptotic flow direction exhibits finite-size effects.! Seem-
ingly, at this point the central charge is only slightly low
than at the decoupled fixed point, as predicted by the per
bative renormalization group@8#. From the numerical data
we would estimate the drop in the central charge as roug
Dc50.01–0.02, in good agreement with the perturbat
treatment which predictsDc50.01681O(«5) @8#.

All of these facts are in agreement with the conjectu
put forward in Ref.@8#, and in particular one would think
that this third fixed point corresponds to a conformal fie
theory with a non-Abelian extendedS4 symmetry.

Finally, the numerics forq52 ~four coupled Ising mod-
els! is less conclusive, and we cannot rule out the possibi
of a more involved fixed point structure. In particular, ac
52 theory is not only obtainable by decoupling the fo
models, but also by a pairwise coupling into two mutua
decoupled four-state Potts~or Ashkin-Teller! models. In-
deed, a similar phenomenon has already been observe
the case ofthreecoupled Ising models@8#.

The author is indebted to M. Picco for some very use
discussions.
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