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We establish explicit duality transformations for systemsvbf-state Potts models coupled through their
local energy density, generalizing known resultsNo+ 1,2,3. TheM-dimensional space of coupling constants
contains a self-dual submanifold of dimensiog,=[M/2]. For the caséM =4, the variation of the effective
central charge along the self-dual surface is investigated by numerical transfer matrix techniques. Evidence is
given for the existence of a family of critical points, corresponding to conformal field theories with an extended
Sy symmetry algebra.
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For several decades, thestate Potts model has been usedsign of the coupling constahf9]. More interestingly, for
to model ferromagnetic materialsd], and an impressive M =3 they identify the exact lattice realization of a critical
number of results are known about it, especially in two di-theory with exponents consistent with those of the perturba-
mensiong2—4]. More recently, its random-bond counterpart tive treatment, and they conjecture that this generalizes to
has attracted considerable attentf&i, primarily because it any integetM=3. Their proposal is then to study this class
permits one to study how quenched randomness coupling tef coupled models, which are now unitary by definition, and

the local energy density can modify the nature of a phas@nly take the limitM—0 once the exact expressions for the
transition. various critical exponents have been worked out. One could

But despite the remarkable successes of conformal invarflOP€ to attack this task by means of extended conformal field

ance applied to pure two-dimensional systems, the amount §f€0rY, thus combining thg, symmetry of the spin variable
analytical results on the random-bond Potts model is rathe?y & non-AbeliarBy symmetry upon permuting the replicas.
scarce. Usually the disorder is dealt with by introducMg Clearly, a first step in this direction is to identify the lat-
replicas of the original model, with mutual energy-energytice modgls corresponding to this series of critice_ll theories,
interactions, and taking the limil — 0. The price to be paid parqmetrlzed by the' integeil = 3. Fo.r M=3 . this was

; . achieved[8] by working out the duality relations foM

is, however, that the resulting system loses many of the pro

. o _ ) p<§oupled Potts models on the square lattice, within the
erties(such as unitaritythat lie at the heart of conventional M-dimensional space of coupling constants giving ris& o
conformal field theory6,7].

) symmetric interactions amongst the lattice energy operators
Very recently, an alternative approach was suggested by

Dotsenkoet al. [8]. These authors point out that the pertur-
bative renormalization grouf6] (effectively an expansion

1 _ . - . _ .
around the Ising model in the small parameter q—2) The caseM =2 is special: Folg=2 (the Ashkin-Teller model

predicts the existence of a nontrivial infrared fixed point att'® oUPIing presents a marginal perturbation, giving rise to a
halfline of critical points along which the critical exponents vary

. . _ _ 2 _

Interlayer coupling, > —&/(M—2)+ O(¢”), so that th(_a re continuously{3]. On the other hand, fog>2 where the perturba-

gionsM <2 andM>2 are somehow dual upon changing the o is relevant, the model is still integrable, but now presents a
mass generation leading to noncritical behay&jr
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of the replicas. Studying numerically the variation of the By means of a generalized Kasteleyn-Fortuin transforma-
effective central charg¢lQ] along the resulting self-dual tion [14] the local Boltzmann weights can be recast as
line, using a very powerful transfer matrix technique, the
critical point was unambiguously identified with one of the ,
endpoints of that line. eXp(_Hij):nHl # 1;[
Unfortunately, it was hard to see how such duality rela- Tk,
tions could be extended to the case of genktalhe calcu-
lations in Ref.[8] relied on a particular versiofil1] of the X
method of lattice Fourier transforni&2], already employed
for M =2 two decades agd 3]. Though perfectly adapted to
the case of linear combinations of cosinoidal interaction
within a single(vecton Potts mode[12], this approach led to
increasingly complicated algebra when several coupled mo
els were considered. Moreover, it seemed impossible to re-

M

1+(e*<m—1)|=1_[1 5(05”“'),01?“')) )

In analogy with the case d¥l =1, the products can now
Se expanded so as to transform the original Potts model into
jts associated random cluster model. To this end we note that
g. (3) can be rewritten in the form

cast the end results in a reasonably simple form for lakfier M m
In the present Rapid Communication we wish to assesexp(—H;))=bo+ >, by >’ I1 st ,af“')),
whether such a scenario of a unique critical point with an m=1  ui#Fpptopm =1

extendedS,, symmetry can indeed be expected to persist in 4
the general case &fl =3 symmetrically coupled models. We
explicitly work out the duality transformations for ariy,
and show that they can be stated in a very simple fidom
(9)] after redefining the coupling constants.

The lattice identification of th! = 3 critical point in Ref.
[8] crucially relied on the existence ofane-parameteself-
dual manifold, permitting only two possible directions of the m
initial flow away from the decoupling fixed point. We find in Jn= (m) Ky (5)
general a richer structure with diM/2]-dimensional self- k=
dual manifold. Nonetheless, from a numerical study of the _
caseM =4 we end up concluding that the uniqueness of thdr M=1, and we sed,=Ko=0. On the other hnz];md, we find
nontrivial fixed point can be expected to persist, since thdfom Eq.(4) that this must be equated Bfo(i)by. This
decoupling fixed point acts as a saddle point of the effectivé€t ofM +1 equations can be solved for thg by recursion,

defining the coefficientgb,,}M_,. The latter can be related
to the physical coupling constanf&,}M_, by evaluating
Egs.(3) and(4) in the situation where precisety out of the
M distinct Kroneckers-functions are nonzero. Clearly, in
this case Eq(3) is equal to &m, where

central charge. considering in turn the cases=0,1,... M. After some
Consider then a system o identical planar lattices, algebra, the edge weightg (for k=0) are then found as
stacked on top of one another. On each latticeisigéand for K .
_ . . (,u)
each Iayer,u, 12,... M, we d'eflne a Potts spiay; that by = 2 (_1)m+k( )ejm_ 6)
can be in any ofj=2,3, . . . distinct states. The layers inter- m=0 m

act by means of the reduced Hamiltonian
The partition function in the spin representation

H=2 M, (1)
m 2:{2} IT exp—H;) 7
o} (ij)
where(ij) denotes the set of lattice edges, andSgnsym-
metric nearest-neighbor interaction is defined as can now be transformed into the random cluster representa-

tion as follows. First, insert Eq4) on the right-hand side of
M , m () () the above equation, and imagine expanding the product over

Hij=— Z Km 2 |H 8™, a"™). (20 the lattice edgesij). To each term in the resulting sum we

e L associate an edge coloriggof the M-fold replicated lattice,
where an edgeif) in layer m is considered to be colored
for which the indices & ,<M with [=1,2,... m are all  (Occupied if the term contains the fa?t(ﬁ(‘fi(m) .o{™), and
different, and(x,y) =1 if x=y and zero otherwise. uncolored(empty) if it does not.(In this Ianguage_, the cou-

For M=1 the model thus defined reduces to the convenP!iNgs Ji correspond to the local energy density summed

tional Potts model, while foM =2 it is identical to the ©V€r all possible permutations of precis&ygimultaneously
Ashkin-Teller-like model considered in RéfL3], where the colored edges. i . . . .
Potts models of either layer are coupled through their local 1he Summation over the spin variablgs} is now trivi-
energy density. FoM>2, additional multienergy interac- &lly performed, yielding a factor of for each connected
tions between several layers have been added, since sugfmponentclustey in the coloring graph. Keeping track of
interactions are generated by the duality transformations, 49€ Prefactors multiplying thé-functions, using Eq(4), we
we shall soon see. However, from the point of view of con-conclude that

By definition the primed summation runs over tlﬁ#) (terms

formal field theory these supplementary interactions are ir- M
relevant in the continuum limit. The casd =3 was dis- ZzE qume )
cussed in Ref[8]. G m=1 m’
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whereC,, is the number of clusters in thmath layer, andB,, Dy=[M/2]. In particular, the ordinary Potts modeM(
is the number of occurencies i of a situation where pre- =1) has a unique self-dual point, while fof =2 [13] and
cisely m (O=m=<M) edges placed on top of one another M =3 [8] one has a line of self-dual solutions.
have been simultaneously colored. Our main result is constituted by Ed$) and(6) relating
It is worth noticing that the random cluster description of the physical coupling constan{¥,,} to the edge weights
the model has the advantage tlgadnly enters as a param- {b,}, in conjunction with Eqs(9) and (10) giving the ex-
eter. By analytic continuation one can thus give meaning to licit (self-)duality relations in terms of the latter.
noninteger number of states. The price to be paid is that the Since the interaction energies entering E).are invari-
C, are,a priori, nonlocal quantities. ant under a simultaneous shift of all Potts spins, an alterna-
In terms of the edge variablds, the duality transforma- tive way of establishing the duality transformations procedes
tion of the partition function is easily worked out. For sim- by Fourier transformation of the energy gafkl]. This
plicity we shall assume that the couplings constéKtg} are  method was used in Refl3] and[8] to work out the cases
identical between all nearest-neighbor pairs of spins, the gerM =2 and M =3, respectively. However, all increases,
eralization to an arbitrary inhomogeneous distribution ofthis procedure very quickly becomes quite involved. To bet-
couplings being trivial. By analogy with the cadk=1, a ter appreciate the ease of the present approach, let us briefly
given coloring configuratiory is taken to be dual to a col- pause to see how the parametrizations of the self-dual lines

oring configuratiorG of the dual lattice obtained by applying for M=2,3, expressed in terms of the coupling&,}, can

the following duality rule:Each colored edge intersects an be reproduced in a most expedient manner.

uncolored dual edgeand vice versa. In particular, the de-

mand that the configuratiaf,, with all lattice edges colored
be dual to the configuratioGemyy With no colored(dual

edge fixes the constant entering the duality transformation. oo

Indeed, from Eq/(8), we find thatGy, has weightq"bE ,
whereE is the total number of lattice edges, afghy is

ForM =2, Eq.(10) givesb,=q, where from Eqs(5) and
(6) by=e?1tK2—2d1+ 1, Thus,

_2e+(q-1)

=, 1y

weighted bygFb5 , whereF is the number of faces, includ- in accordance with Re_[.13]. Similarly, for M=3 one has
ing the exterior one. We thus seek for a duality transformab:=00,/bs=b,/\/q, with b;=€“1—1, b, as before, and

tion of the formg" b5z ({b,}) =q"b5Z({b}), where for

any configuratiory the edge weights must transform so as to

keep the same relative weight betwe&gandgy,, as between
G and Gempty-

An arbitrary coloring configuratiog entering Eq(8) can
be generated by applying a finite number of changes o
in which an edge of weighlb,, is changed into an edge of
weight b, for somem=0,1,... M—1. By such a change,
in general, a numbée<M —m of pivotal bonds are removed
from the coloring graph, thus creatikgew clusters, and the
weight relative to that ofj,; will change byg*b,,/by . On

the other hand, in the dual configuratiha numberM
—m—Kk of clusters will be lost, since each of thenew

clusters mentioned above will be accompanied by the forma-

tion of aloop in G. The weight change relative tGempy
therefore amounts tby,_,/(bog™ ™"%). Comparing these
two changes we see that the factorgjbfcancel nicely, and
after a change of variables— M —m the duality transfor-
mation takes the simple form

'B :qmbM—m

m for m=0,1,... M,
by

9

the relation withm=0 being trivial.

Self-dual solutions can be found by imposibg=b,,.
However, this gives rise to only(M +1)/2] independent
equations

bu_m=aq"? ™Mb, for m=0,1, ... T} (10)

and the M-dimensional parameter spacf,jm_,, or

by=e3K113KatKs_ 32Kt 31— 1. This immediately
leads to the result given in R€8],
(2+g)ea—(1+)

= 74 ,

ez

(12)
L 3(E-1a+ Va) +q¥2+ 1o,

L2+ -1+ git]®

Returning now to the general case, we notice that the self-
dual manifold always contains two special points for which
the behavior of thévl coupled models can be related to that
of a single Potts model. At the first such point,

bn,=0q™2 for m=0,1 [M} (13)
" A5

one hask;=log(1++q) and K,,=0 for m=2,3,... M,
whence theM models simply decouple. The other point

> (14

M
b,=6(m,0) for m=0,1,... [—

corresponds toK,,=0 for m=1,2,... M—1 and Ky
=log(1+g""?), when the resulting model is equivalent to a
singleqM-state Potts model. Evidently, fdl =1 these two
special points coincide.

Specializing now to the case of a regular two-dimensional
lattice, it is well-known that at the two special points the
model undergoes a phase transition, which is continuous if
the effective number of states r gV as the case may be
is <4 [15]. In Ref.[8] the question was raised whether one
in general can identify further nontrivial critical theories on

{KntM_,, thus has a self-dual submanifold of dimensionthe self-dual manifolds. In particular, it was argued that for
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be reproduced much more accuratg8}. On the figureq
=3, but other values of] in the range 2g=<4 lead to
similar results.

According to Zamolodchikov's-theorem[10], a system
initially in the vicinity of the decoupled fixed point
(b;,b,)=(/q,q), shown as an asterisk on the figure, will
start flowing downhill in this central charge landscape. Fig-
ure 1 very clearly indicates that the decoupled fixed point
acts as a saddle point, and there are thus only two possibili-
ties for the direction of the initial flow.

The first of these will take the system to the stable fixed
point at the origin which trivially corresponds to one self-
dual g*-state Potts model. Far=3 this leads to the genera-

0 2 4 6 8 10 tion of a finite correlation length, consistent withQz=0 in
b, the limit of an infinitely large system. As expected, the flow
starts out in théb, direction, meaning that it is the energy-

FIG. 1. Contour plot of the effective central chagf&,8) along energy coupling between layer& ) rather than the spin-
the self-dual surfaceb(,b,) for four coupled three-state Potts spin coupling within each layeik(;) that controls the initial
models. The decoupled fixed point is shown as an asterisk, angqgyy.
renormalization group flow lines are sketched as a guide to the eye. \jore interestingly, if the system is started out in the

o ) _ positedirrection (i.e., with K, slightly positive it will flow
M =3 there is indeed such a point, supposedly correspondingywards a third nontrivial fixed point, for which the edge
to a conformal field theory with an extend&d symmetry.  weights tend to infinity in some definite ratiq&xactly what

To get an indication whether such results can be expecteghese ratios are is difficult to estimate, given that the
to generalize also to higher values M, we have numeri- asymptotic flow direction exhibits finite-size effegtSeem-
cally computed the effective central chargeMb&4 coupled  ingly, at this point the central charge is only slightly lower
models along the two-dimensional self-dual surface. Wehan at the decoupled fixed point, as predicted by the pertur-
were able to diagonalize the transfer matrix for strips ofbative renormalization groufB]. From the numerical data
width L=4,6,8 lattice constants in the equivalent loopWe would estimate the drop in the central charge as roughly
model. Technical details of the simulations have been reAc=0.01-0.02, in good agreement with the perturbative
ported in Ref[8]. Relating the specific free enerdy(L) to  treatment which predictdc=0.0168+ O(&°) [8].
the leading eigenvalue of the transfer matrix in the standard All of these facts are in agreement with the conjectures
way, two estimates of the effective central chargé4,6)  put forward in Ref.[8], and in particular one would think
andc(6,8), were then obtained by fitting data for two con- that this third fixed point corresponds to a conformal field

secutive strip widths according fa6] theory with a non-Abelian extendesl symmetry.
Finally, the numerics fog=2 (four coupled Ising mod-
pree el is less conclusive, and we cannot rule out the possibility
fo(L)=fo()— @4' e (15  of a more involved fixed point structure. In particularca

=2 theory is not only obtainable by decoupling the four
; _models, but also by a pairwise coupling into two mutually
A contour plot 0fc(6,8), based on a grid of 221 param decoupled four-state Pott®r Ashkin-Telle) models. In-

eter values for If,,b,), is shown in Fig. 1. The data for deed imil h h readv b b dqf
c(4,6) look qualitatively similar, but are less accurate due tqg €ed, a simiiar phenomenon has airéady been observed for

finite-size effects. We should stress that even though the atghe case othree coupled Ising model$s].
solute values o€(6,8) are some 4% below what one would The author is indebted to M. Picco for some very useful
expect in the.— oo limit, the variationsin c are supposed to discussions.
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